Entradas populares

viernes, 24 de junio de 2011

Nucleótidos

GENERALIDADES.
Los nucleótidos son un tipo de biomolécula que posee distintas funciones en el metabolismo, ya
que actúan como señales químicas en respuesta a hormonas y otros estímulos celulares, son componentes estructurales de cofactores enzimáticos e intermediarios metabólicos y son los constituyentes de los ácidos nucleicos. Los nucleótidos estan formados por 3 componentes:
-Una pentosa, que puede ser una 2'- desoxi- D ribosa (desoxinucleótido) o una D- ribosa (ribonuclótido).
- Una base nitrogenada; purina o pirimidina.
- Un grupo fosfato (la molécula sin el fosfato se llama nucleósido).


En la imagen se muestra la estructura general de un ribonucleótido, los desoxinucleótidos poseen un -H en lugar de un -OH
en el carbono 2.
La base está unida covalentemente unida por el N-1 de las pirimidinas y N-9 de las purinas a traves de un enlace β- glucosídico con el carbono 1' de la pentosa y el fosfato esá esterificado con el carbono 5'.


Tanto el ADN como elARN contienen dos bases purínicas principales: la ADENINA (A) y la GUANINA (G). El ADN y el ARN también tienen 2 bases pirimidínicas principales, la CITOSINA (C) que se encuentra en ambos tipos de ácido nucleico, pero la segunda base pirimidínica es la TIMINA (T) en el ADN y URACILO (U) en el ARN.
Tanto el ADN como el ARN contienen además otras bases secundarias. En el ADN, las mas comunes son las formas metiladas de las bases principales. En los ADN víricos, ciertas bases pueden estar metiladas, hidroxiladas o glicosiladas. Las bases alteradas o poco comunes son señales específicas para la regulación o protección del material genético. En el ARNt también se encuentran muchas de éstas bases modificadas.


UNIÓN ENTRE NUCLEÓTIDOS.
Los nucleótidos tanto de ADN como ARN están unidos covalentemente, los grupos hidroxilo en el 5' del nucleótido están unidos al grupo hidroxilo en el 3' del nucleótido siguiente a través de un enlace fosfodiéster. Por lo tanto, los esqueletos covalentes en los ácidos nucleicos consisten en residuos alternados de fosfato y pentosa, mientras que las bases pueden considerarse como grupos laterales unidos al esqueleto en intervalos regulares.



Todos los enlaces fosfodiéster tienen la misma orientación a lo largo de la cadena, con lo cual cada cadena de ácido nucleico posee una polaridad específica y extremos 5' y 3' diferenciados. Por definición, el extremo 5' carece de nucleótido en posición 5', mientras que el extremo 3' carece de nucleótido en la posición 3'.

PROPIEDADES DE LOS NUCLEÓTIDOS.
  • Altamente conjugados, lo que influye en la estructura y capacidad de absorción de la luz. La resonancia de los átomos del anillo hace que la mayoría de los enlaces tenga un carácter de doble enlace parcial. Por efecto de la resonancia, todas las bases de los nucleótidos absorben la luz UV y los ácidos nucleicos se caracterizan por una fuerte absorción a longitudes de onda cercana a los 260 nm.
  • Las bases purínicas y pirimidínicas son hidrófobas y relativamente insolubles en el agua a pH celular. A pH alcalino, las bases adquieren carga y aumenta su solubilidad en agua. Las interacciones hidrofóbicas de apilamiento sitúan paralelamente los planos de los anillos de dos o más bases. El apilamiento también incorpora una combinación de interacciones de Van der Waals y dipolo- dipolo entre las bases y además ayuda a minimizar el contacto con el agua y es de importancia en la estabilización de la estructura tridimensional de los ácidos nucleicos.
  • Los grupos funcionales más importantes de las purinas y pirimidinas son los grupos carboxilo, los átomos de nitrógeno del anillo y los grupos amino exocíclicos. La formación de los enlaces de hidrógeno, en los que participan los grupos amino y carbonilo, constituye el 2do tipo principal de interacción entre las bases de las moléculas del ácido nucleico. Los enlaces de hidrógeno permiten la asociación complementaria de dos (y en ocasiones tres y cuatro) cadenas de ácidos nucleicos. Los patrones de enlaces de hidrógeno fueron definidos por Watson y Crick en 1953, donde determianron que A se una conT y que G se une con C. Este apareamiento específico de bases permite la correcta duplicación del material genético.
TRANSFORMACIONES NO ENZIMÁTICAS DE LOS NUCLEÓTIDOS Y ÁCIDOS NUCLEICOS

Las purinas y pirimidinas, conjuntamente con los nucleótidos, experimentan una serie de alteraciones espontáneas que se producen lentamente en su estructura covalente. Las alteraciones en las estructuras del ADN dan lugar a cambios permanentes en la información genética y se llaman MUTACIONES.
Varias bases sufren la pérdida de grupos amino exocíclicos . Un ejemplo de ello es la desaminación de la citosina (del ADN) para dar lugar al uracilo. A primera vista, la lenta desaminación de la citosina parece inócua. El uracilo es reconocido inmediatamente como extraño y es eliminado por un sistema de reparación. Si el ADN contuviera normalmente uracilos no reparados causarían cambios permanentes en la secuencia al aparearse con adeninas en la replicación.

Otra reacción importante de los desoxinucleótidos es la hidrólisis del enlace N-β glucosídico entre la base y la pentosa y este proceso se da con mayor frecuencia en purinas que en pirimidinas.
La luz UV también puede inducir la condensación de dos grupos etileno para formar un anillo de ciclobutano y también se puede producir un producto llamado fotoproducto 6-4.
Las radiaciones ionizantes (rayos X, rayos gamma) pueden provocar la abertura de los anillo y la fragmentación de las bases, así como otras roturas del esqueleto covalente.
El ADN también puede ser dañado por agentes químicos como los AGENTES DESAMINANTES como el ácido nitroso (HNO2) o compuestos que pueden formar metabólicamente ácido nitroso o nitritos. También los AGENTES ALQUILANTES como el dimetilsulfato que puede metilar la guanina y dar lugar a la O6- metilguanina que no puede aparearse con la citosina.
Sin embargo, la fuente más importante de modificaciones del ADN son las oxidativas. Especies reactivas del oxígeno como el peróxido de hidrógeno, radicales hidroxilo y radicales superóxido aparecen durante la irradiación o como productos secundarios del metabolismo aeróbico. Los radicales hidroxilo son los responsables de los mayores daños oxidativos y la célula posee un elaborado sistema de defensa para destruir las especies reactivas del oxígeno a productos inócuos a través de las enzimas catalasa y superóxido dismutasa. Sin embargo, una fracción de éstos agentes oxidantes escapa inevitablemente las defensas celulares y se producen lesiones en el ADN que resultan en un conjunto amplio y complejo de reacciones que van desde la oxidación de las desoxirribosas y de las bases, hasta la rotura de las hebras.

MODIFICACIONES ENZIMÁTICAS

Algunas bases del ADN sufren con frecuencia metilación enzimática. Las A y G se encuentran metiladas con mayor frecuencia que las C y las T y la metilación suele restringirse con mayor frecuencia a ciertas secuencias y regiones del ADN.
Todas las metilasas conocidas utilizan como dador de grupos metilo la S- adenosilmetionina. En E. coli existen 2 sistemas de metilación:
  1. Una actúa como un mecanismo de defensa celular que ayuda a distinguir su propio ADN (que se encuentra metilado) del ADN extraño.
  2. El otro sistema metila la adenosina para formar N6- metiladenosina que funciona en el sistema de reparación de pares de bases incorrectos formados ocasionalmente en la replicación.

Los eucariotas metilan la citidina para suprimir la migración de los elementos transponibles.

No hay comentarios:

Publicar un comentario